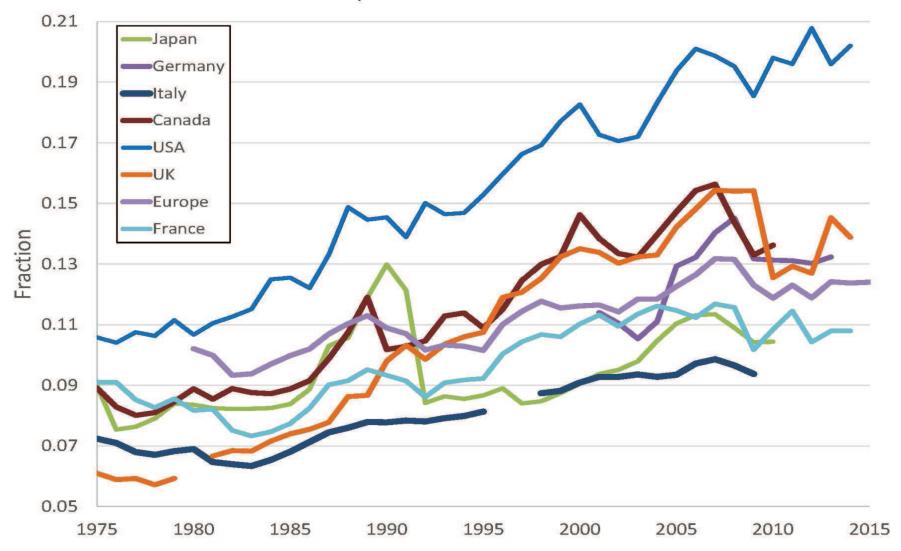
#### Inequality Aversion, Populism, and the Backlash Against Globalization

Ľuboš Pástor \*

and

Pietro Veronesi \*\*


\* University of Chicago, National Bank of Slovakia, NBER, CEPR \*\* University of Chicago, NBER, CEPR



• Model motivated by the **backlash against globalization** in rich western democracies (Brexit, Trump, etc.)

- Model motivated by the **backlash against globalization** in rich western democracies (Brexit, Trump, etc.)
- Pushback against globalization emerges endogenously
  - $-\operatorname{Rational}$  voters' optimal response to rising inequality

Top 1% Income Share



- Model motivated by the **backlash against globalization** in rich western democracies (Brexit, Trump, etc.)
- Pushback against globalization emerges endogenously
  - $-\operatorname{Rational}$  voters' optimal response to  $\operatorname{\mathbf{rising}}$  inequality

- Model motivated by the **backlash against globalization** in rich western democracies (Brexit, Trump, etc.)
- Pushback against globalization emerges endogenously
  - $-\operatorname{Rational}$  voters' optimal response to  $\operatorname{\mathbf{rising}}$  inequality
  - Globalization carries the seeds of its own destruction

Global growth  $\downarrow$  (heterogeneous risk aversion) Inequality  $\uparrow$ 

Global growth

↓ (heterogeneous risk aversion)
Inequality ↑

↓ (inequality aversion)
Backlash

Global growth

↓ (heterogeneous risk aversion)
Inequality ↑

↓ (inequality aversion)
Backlash

• Backlash = Elect a populist, **Globalization**  $\rightarrow$  **Autarky** 

 $-\operatorname{\mathbf{Risk}}$  sharing: Global  $\rightarrow$  Local

 $-\operatorname{Consumption} \downarrow$  but equality  $\uparrow$ 

Global growth

↓ (heterogeneous risk aversion)
Inequality ↑

↓ (inequality aversion)
Backlash

• Backlash = Elect a populist, **Globalization**  $\rightarrow$  **Autarky** 

- $-\operatorname{\mathbf{Risk}}$  sharing: Global  $\rightarrow$  Local
- Consumption  $\downarrow$  but equality  $\uparrow$
- Heterogeneous risk aversion: Within countries  $\implies$  Inequality Across countries  $\implies$  Imbalances

#### Empirical Evidence

- Types of evidence
  - Across countries: Vote shares of populist parties + Surveys
  - Across individuals: Brexit + Trump voters

#### Empirical Evidence

- Types of evidence
  - $-\operatorname{Across}$  countries: Vote shares of populist parties + Surveys
  - Across individuals: Brexit + Trump voters
- Evidence largely supports the model
  - -**Countries**: More populist if they have
    - \* Higher inequality
    - \* Higher financial development
    - \* Lower current account balance
  - Individuals: More populist if they are
    - \* More risk-averse
    - \* More inequality-averse



• Continuum of agents  $i \in [0, 1]$  in countries  $k \in \{US, RoW\}$ 

- Continuum of agents  $i \in [0, 1]$  in countries  $k \in \{US, RoW\}$
- Preferences of agent  $i \in \mathcal{I}^k$  at time  $t \in [0, T]$ :

$$U_i\left(C_{it}, V_t^k, t\right) = e^{-\phi t} \left(\frac{C_{it}^{1-\gamma_i}}{1-\gamma_i}\right)$$

where

 $\gamma_i = \mathbf{Risk}$  aversion

- Continuum of agents  $i \in [0, 1]$  in countries  $k \in \{US, RoW\}$
- Preferences of agent  $i \in \mathcal{I}^k$  at time  $t \in [0, T]$ :

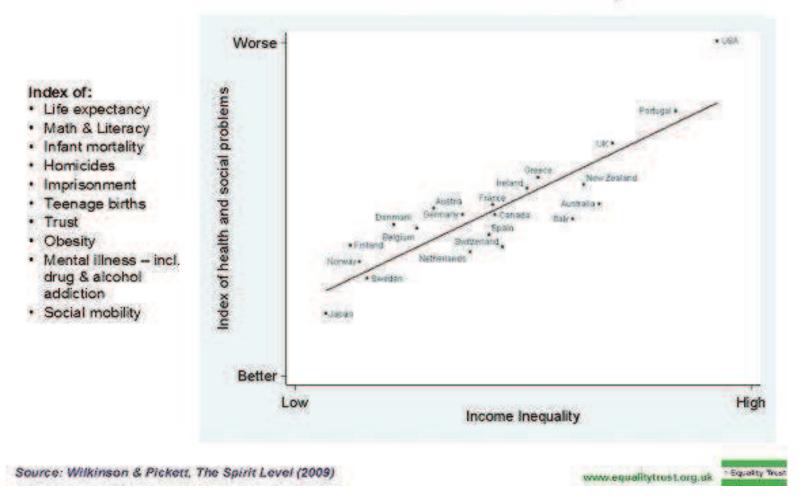
$$U_i\left(C_{it}, V_t^k, t\right) = e^{-\phi t}\left(\frac{C_{it}^{1-\gamma_i}}{1-\gamma_i} - \eta_i V_t^k\right)$$


where

$$V_t^k = \operatorname{Var}\left(\frac{C_{it}}{\overline{C}_t^k} \mid i \in \mathcal{I}^k\right) =$$
**Inequality** in country  $k$ 

 $\gamma_i =$ **Risk aversion**  $\eta_i =$ **Inequality aversion** ( $\approx$  anti-elitism, "envy of the rich") Inequality Aversion

- Evidence
  - Experiments
  - Surveys


#### **Overall Well-Being Drops as National Income Inequality Rises**



#### People Report Having More Negative Experiences as National Income Inequality Rises

Source: Harvard Business Review

#### Health and Social Problems are Worse in More Unequal Countries



- Continuum of agents  $i \in [0, 1]$  in countries  $k \in \{US, RoW\}$
- Preferences of agent  $i \in \mathcal{I}^k$  at time  $t \in [0, T]$ :

$$U_i\left(C_{it}, V_t^k, t\right) = e^{-\phi t}\left(\frac{C_{it}^{1-\gamma_i}}{1-\gamma_i} - \eta_i V_t^k\right)$$

where

$$V_t^k = \operatorname{Var}\left(\frac{C_{it}}{\overline{C}_t^k} \mid i \in \mathcal{I}^k\right) =$$
**Inequality** in country  $k$ 

 $\gamma_i =$ **Risk aversion**  $\eta_i =$ **Inequality aversion** ( $\approx$  anti-elitism, "envy of the rich")

- U.S. agents are less risk-averse than RoW agents
  - Interpretation: U.S. more financially developed than RoW

- U.S. agents are less risk-averse than RoW agents
  - Interpretation: U.S. more financially developed than RoW
- Technical assumption:

$$\lim_{x \to \infty} \frac{\mathrm{E}^{\mathcal{I}}[e^{x/\gamma_j} \mid j \in \mathcal{I}^{RoW}]}{\mathrm{E}^{\mathcal{I}}[e^{x/\gamma_i} \mid i \in \mathcal{I}^{US}]} = 0$$

Examples:

- 1.  $\gamma_i < \gamma_j$  for all  $i \in \mathcal{I}^{US}, j \in \mathcal{I}^{RoW}$
- 2. U.S. risk tolerance  $\frac{1}{\gamma_i} \sim U[a, b]$ , RoW's  $\frac{1}{\gamma_i} \sim U[a, c]$ , with b > c
- 3. Truncated normals for  $\frac{1}{\gamma_i}$  in both countries, same truncation points, same dispersion, higher mean in the U.S.

• Global output:  $D_t = D_t^{US} + D_t^{RoW}$ . Its log,  $\delta_t \equiv \log(D_t)$ , follows

$$d\delta_t = \mu_\delta \, dt + \sigma_\delta \, dZ_t$$

where  $\mu_{\delta} > 0 \Rightarrow$  output trends upward

• Global output:  $D_t = D_t^{US} + D_t^{RoW}$ . Its log,  $\delta_t \equiv \log(D_t)$ , follows

$$d\delta_t = \mu_\delta \, dt + \sigma_\delta \, dZ_t$$

where  $\mu_{\delta} > 0 \Rightarrow$  output trends upward

• For simplicity, also assume (relaxed later):

$$\frac{D_t^{US}}{D_t} = \text{U.S. population share}$$

- Agents share risk in **complete markets** 
  - Interpretation 1: Financial contracts (stocks, bonds)
  - Interpretation 2: Labor contracts (risky, safe jobs)

- Two possible regimes:
  - 1. **Globalization**: Cross-border trade allowed Global risk sharing
  - 2. Autarky: Cross-border trade not allowed Local risk sharing

- Two possible regimes:
  - 1. **Globalization**: Cross-border trade allowed Global risk sharing
  - 2. **Autarky**: Cross-border trade not allowed Local risk sharing
- Both countries hold **elections** at known time  $\tau \in [0, T]$ 
  - 1. Mainstream candidate: Keep globalization
  - 2. **Populist** candidate: Move to autarky
    - Elections decided by the median voter

- Two possible regimes:
  - 1. **Globalization**: Cross-border trade allowed Global risk sharing
  - 2. **Autarky**: Cross-border trade not allowed Local risk sharing
- Both countries hold **elections** at known time  $\tau \in [0, T]$ 
  - 1. Mainstream candidate: Keep globalization
  - 2. **Populist** candidate: Move to autarky
    - Elections decided by the median voter
- Expropriation not allowed
  - $-\operatorname{Can't}$  move to autarky if other country suffers consumption loss

#### Optimal Consumption

• Complete markets  $\implies$  Agent *i* in country *k* solves

$$\max_{\{C_{it}\}} \mathcal{E}_0\left[\int_0^T U_i\left(C_{it}, V_t^k, t\right) dt\right] \quad \text{s.t.} \quad \mathcal{E}_0\left[\int_0^T \pi_t^k C_{it} dt\right] = w_i$$

where  $\pi_t^k$  = state price density,  $w_i$  = initial endowment

#### Optimal Consumption

• Complete markets  $\implies$  Agent *i* in country *k* solves

$$\max_{\{C_{it}\}} \mathcal{E}_0\left[\int_0^T U_i\left(C_{it}, V_t^k, t\right) dt\right] \quad \text{s.t.} \quad \mathcal{E}_0\left[\int_0^T \pi_t^k C_{it} dt\right] = w_i$$

where  $\pi_t^k$  = state price density,  $w_i$  = initial endowment

• **Result**:  $C_{it}^* = f(\gamma_i, \pi_t^k)$ 

- High- $\gamma_i$  agents choose consumption less sensitive to shocks

• Market clearing: 
$$D_t = \int_{i \in \mathcal{I}} C_{it} di$$
. Solve for  $\pi_t = \pi_t^{US} = \pi_t^{RoW}$ 

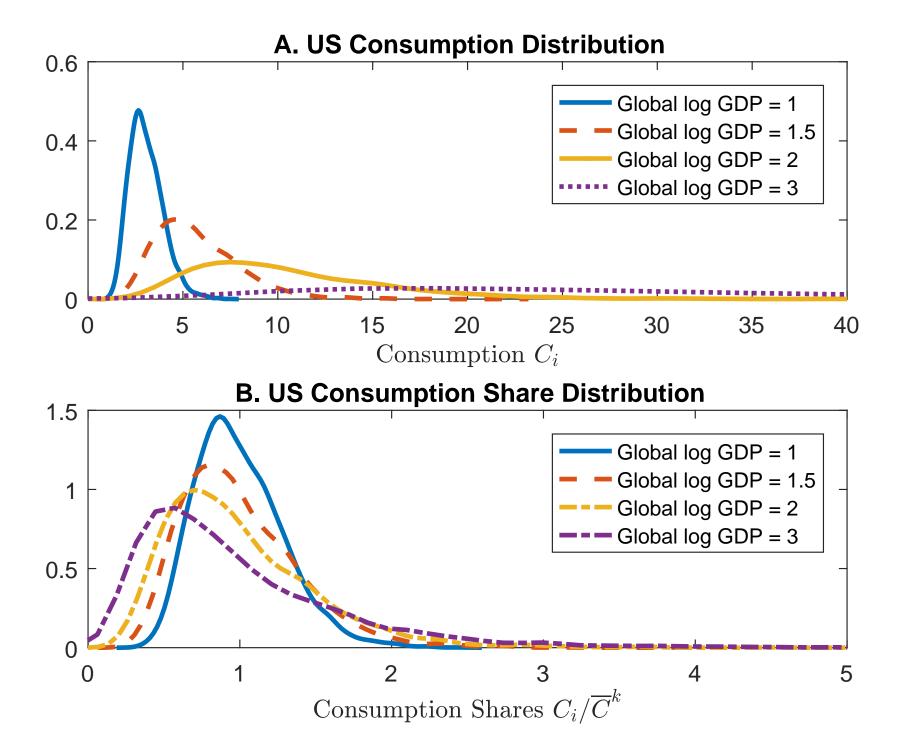
- Market clearing:  $D_t = \int_{i \in \mathcal{I}} C_{it} di$ . Solve for  $\pi_t = \pi_t^{US} = \pi_t^{RoW}$ .
- **Result:** Low- $\gamma_i$  agents grow disproportionately rich
  - Their consumption shares grow with output

$$\frac{C_{it}}{\overline{C}_t^k} \uparrow \text{ in } \delta_t \text{ iff } \gamma_i < \overline{\gamma}^k(\delta_t)$$

- Benefits of growth accrue increasingly to "elites"

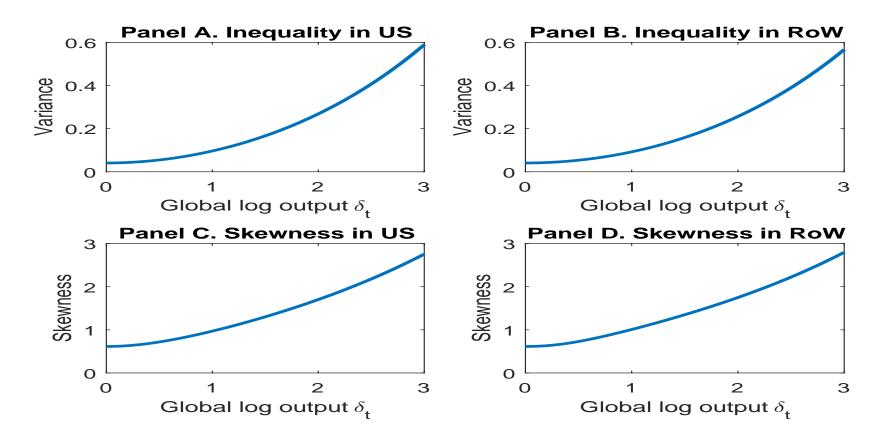
- Market clearing:  $D_t = \int_{i \in \mathcal{I}} C_{it} di$ . Solve for  $\pi_t = \pi_t^{US} = \pi_t^{RoW}$ .
- **Result:** Low- $\gamma_i$  agents grow disproportionately rich

- Their consumption shares grow with output


$$\frac{C_{it}}{\overline{C}_t^k} \uparrow \text{ in } \delta_t \text{ iff } \gamma_i < \overline{\gamma}^k(\delta_t)$$

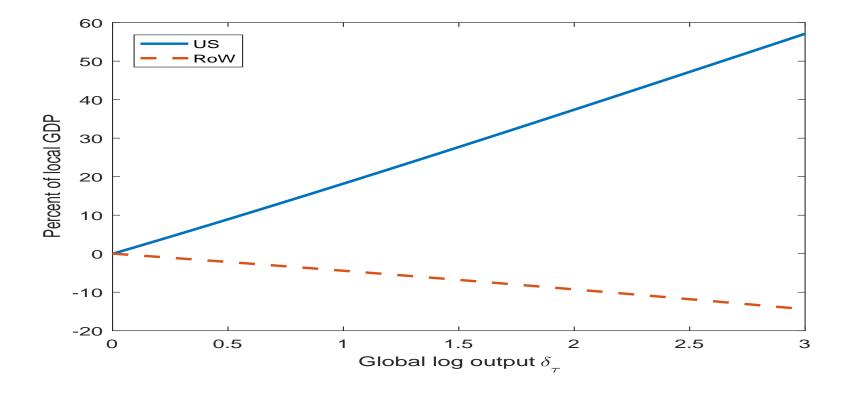
- Benefits of growth accrue increasingly to "elites"

• **Result:** Fraction of agents who grow richer declines with output


$$\delta_t \uparrow \Longrightarrow \ \overline{\gamma}^k(\delta_t) \downarrow$$

– The ranks of elites are shrinking

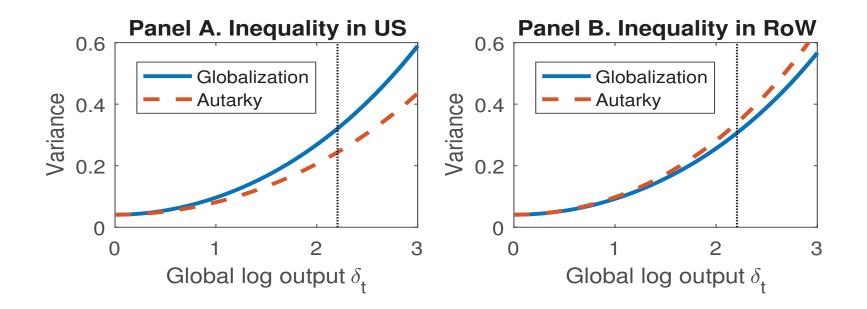



• **Result:** Inequality  $V^k$  increases, without bounds, as output grows. So does the skewness of consumption shares.

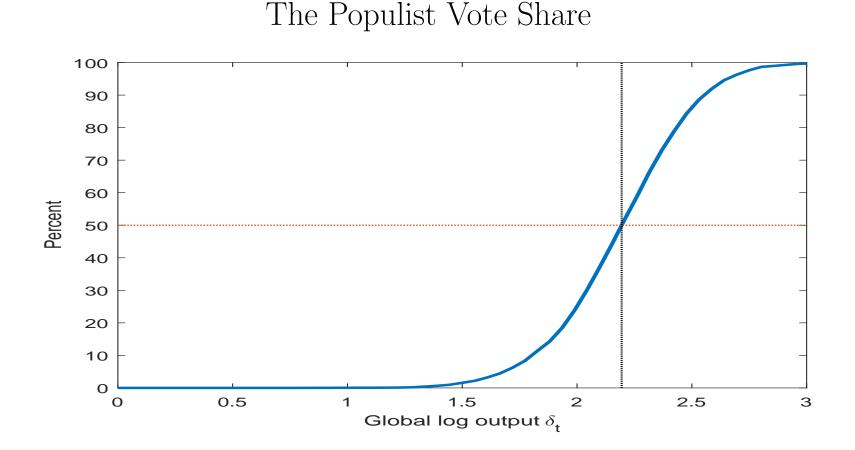
 $\implies$  Inequality grows with output, driven by elites' consumption



• **Result:** U.S. runs a current account deficit, RoW runs a surplus.


$$\int_{i \in \mathcal{I}^{US}} C_{it} \, di > D_t^{US} \,, \quad \int_{i \in \mathcal{I}^{RoW}} C_{it} \, di < D_t^{RoW}$$




Equilibrium under Autarky

• Market clearing:  $D_t^k = \int_{i \in \mathcal{I}^k} C_{it} di$ , for  $k \in \{US, RoW\}$  $\implies$  Solve for  $\pi_t^{US} \neq \pi_t^{RoW}$  Equilibrium under Autarky

- Market clearing:  $D_t^k = \int_{i \in \mathcal{I}^k} C_{it} di$ , for  $k \in \{US, RoW\}$  $\implies$  Solve for  $\pi_t^{US} \neq \pi_t^{RoW}$
- **Result:** U.S. inequality is lower under autarky than under globalization. The opposite is true for RoW.



• **Result:** There exists output level  $\overline{\delta}$  such that for any  $\delta_{\tau} > \overline{\delta}$ , the **populist wins the U.S. election**.



• At time  $\tau$ , agents in country k vote, comparing expected utilities

$$\mathbf{E}_{\tau} \left[ \int_{\tau}^{T} e^{-\phi(s-\tau)} \left( \frac{C_{is}^{1-\gamma_i}}{1-\gamma_i} - \eta^i V_s^k \right) \, ds \right]$$

under the two candidates (mainstream, populist)

• At time  $\tau$ , agents in country k vote, comparing expected utilities

$$\mathbf{E}_{\tau} \left[ \int_{\tau}^{T} e^{-\phi(s-\tau)} \left( \frac{C_{is}^{1-\gamma_{i}}}{1-\gamma_{i}} - \eta^{i} V_{s}^{k} \right) \, ds \right]$$

under the two candidates (mainstream, populist)

• **Result:** For any U.S. agent *i* with  $\eta_i > 0$ , there exists  $\overline{\delta}^i$  such that for any  $\delta_{\tau} > \overline{\delta}^i$ , the agent votes populist.

• At time  $\tau$ , agents in country k vote, comparing expected utilities

$$\mathbf{E}_{\tau} \left[ \int_{\tau}^{T} e^{-\phi(s-\tau)} \left( \frac{C_{is}^{1-\gamma_i}}{1-\gamma_i} - \eta^i V_s^k \right) \, ds \right]$$

under the two candidates (mainstream, populist)

- **Result:** For any U.S. agent *i* with  $\eta_i > 0$ , there exists  $\overline{\delta}^i$  such that for any  $\delta_{\tau} > \overline{\delta}^i$ , the agent votes populist.
- Intuition: Consumption-equality tradeoff - Move to autarky  $\implies C_{it} \downarrow$  but  $V_t^{US} \downarrow$

• At time  $\tau$ , agents in country k vote, comparing expected utilities

$$\mathbf{E}_{\tau} \left[ \int_{\tau}^{T} e^{-\phi(s-\tau)} \left( \frac{C_{is}^{1-\gamma_i}}{1-\gamma_i} - \eta^i V_s^k \right) \, ds \right]$$

under the two candidates (mainstream, populist)

- **Result:** For any U.S. agent *i* with  $\eta_i > 0$ , there exists  $\overline{\delta}^i$  such that for any  $\delta_{\tau} > \overline{\delta}^i$ , the agent votes populist.
- Intuition: Consumption-equality tradeoff
  - Move to autarky  $\implies C_{it} \downarrow$  but  $V_t^{US} \downarrow$
  - $-\delta_t \uparrow \Longrightarrow$  Marginal utility of  $C_{it} \downarrow \Longrightarrow$  Equality dominates

\* Equality is a **luxury good** 

- Social planner would preserve globalization
  - But market equilibrium  $\neq$  social planner solution (externality)

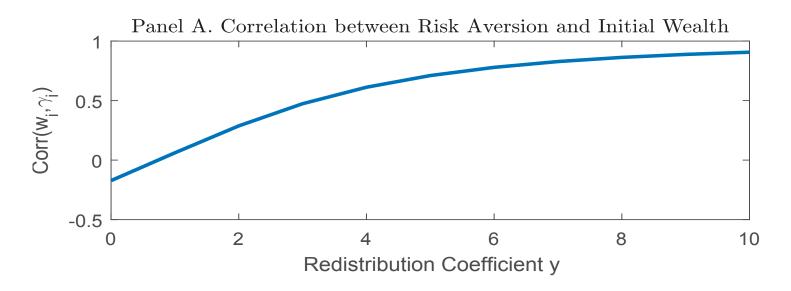
• Social planner would preserve globalization

- But market equilibrium  $\neq$  social planner solution (externality)

• **Result:** Any redistributive policy  $\{\mathcal{T}_{i,t}(\delta_t)\}$  s.t.  $\int \mathcal{T}_i di = 0$  is equivalent to a redistribution of initial endowments  $w_i$ 

- With complete markets, redistributive policies are "traded away"

• Agent *i*'s budget constraint under redistribution:

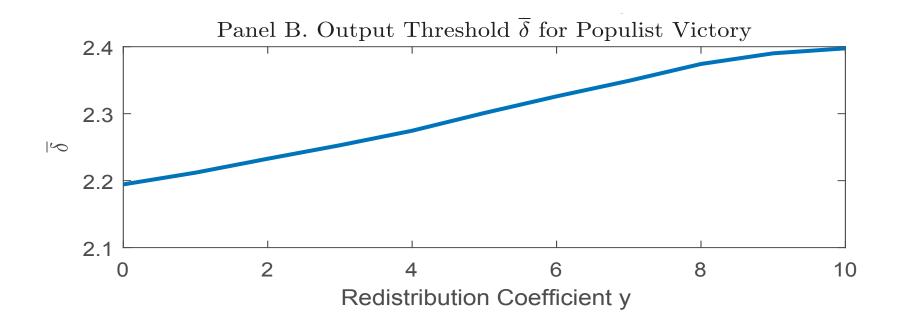

$$\mathbf{E}_0 \left[ \int_0^T \pi_t^k C_{it} \, dt \right] = w_i + \mathbf{E}_0 \left[ \int_0^T \pi_t^k \, \mathcal{T}_{it} \, dt \right]$$

To implement redistributive policy  $\{\mathcal{T}_{i,t}(\delta_t)\}$ , augment agent *i*'s initial endowment by  $\tilde{w}_i = \mathcal{E}_0\left[\int_0^T \pi_t^k \mathcal{T}_{it} dt\right]$ . Note:  $\int \tilde{w}_i di = 0$ .

• For tractability, we consider initial endowments of the form

$$w_i = e^{\psi_i} \operatorname{E}_0 \left[ \int_0^T e^{-\phi t + \left(g_t^k - y\right)/\gamma_i - g_t^k} dt \right]$$

• Increase  $y \implies$  Redistribute  $w_i$  from low- $\gamma_i$  to high- $\gamma_i$  agents - From those who benefit from globalization to those who lose




• **Result:** For any redistributive policy y there exists  $\overline{\delta}$  such that for any  $\delta_{\tau} > \overline{\delta}$ , the populist wins the U.S. election.

 $\implies$  For any given y, when  $\tau$  is large enough, the populist wins

• **Result:** For any redistributive policy y there exists  $\overline{\delta}$  such that for any  $\delta_{\tau} > \overline{\delta}$ , the populist wins the U.S. election.

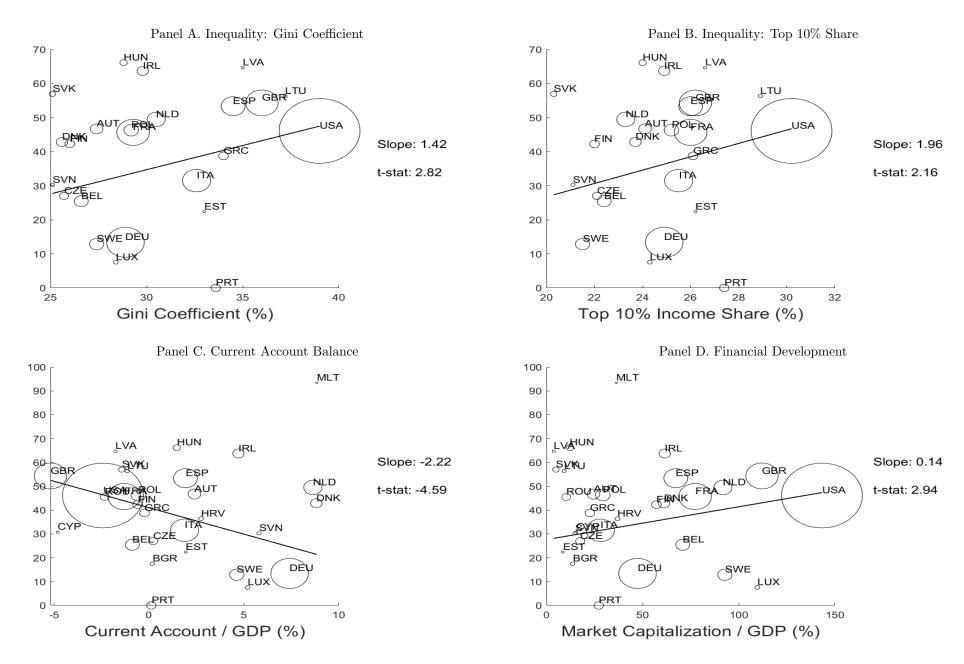
 $\implies$  For any given y, when  $\tau$  is large enough, the populist wins



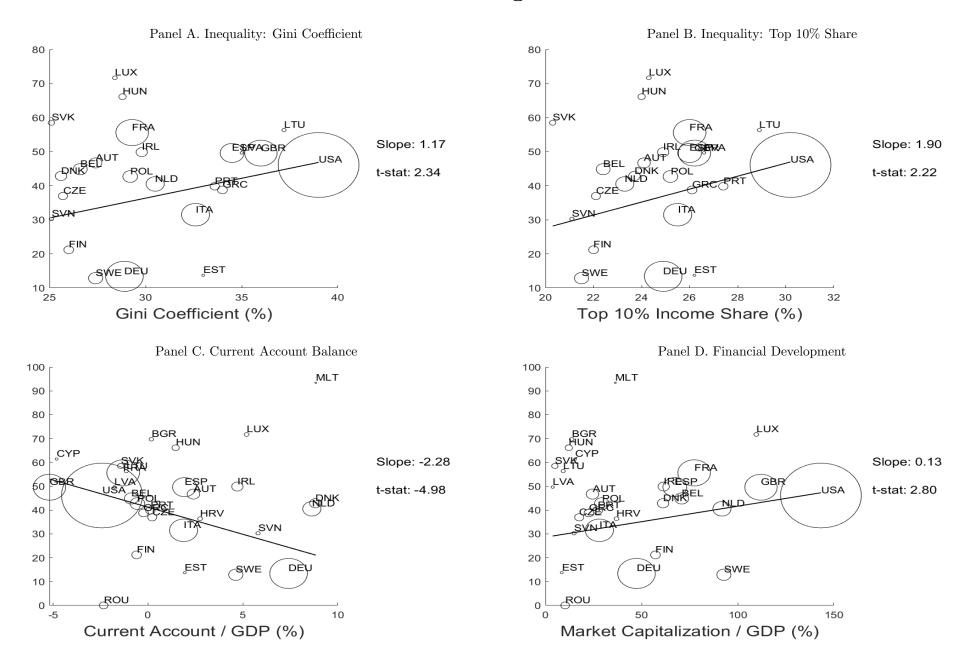
• **Result:** Redistribution can delay the populist win but not forever

### Evidence: Which Countries Are Populist?

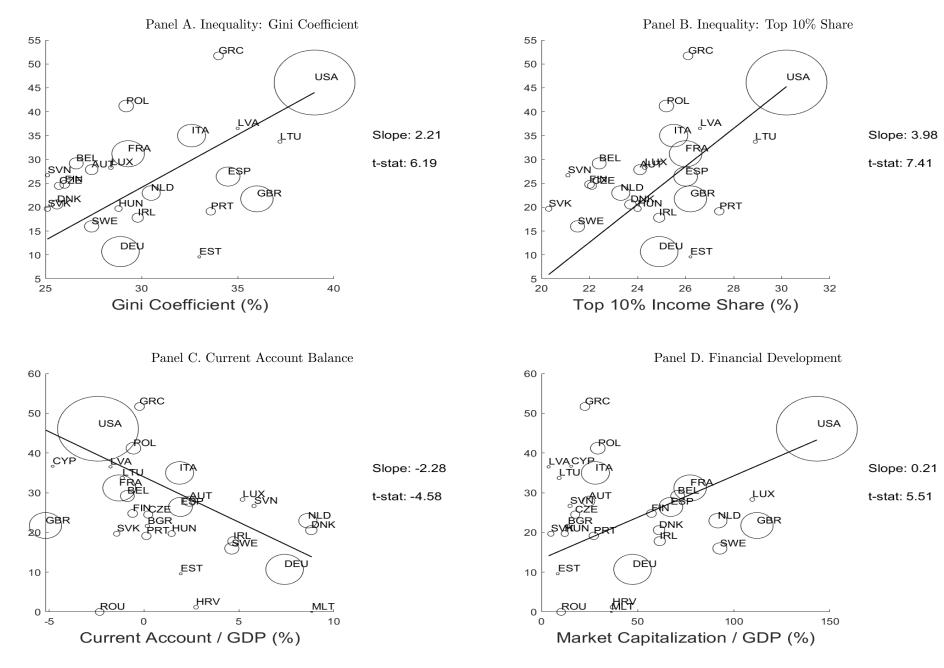
## • **Predictions:** Populism is stronger in countries with


- Higher inequality
- Lower current account balance
- Higher financial development

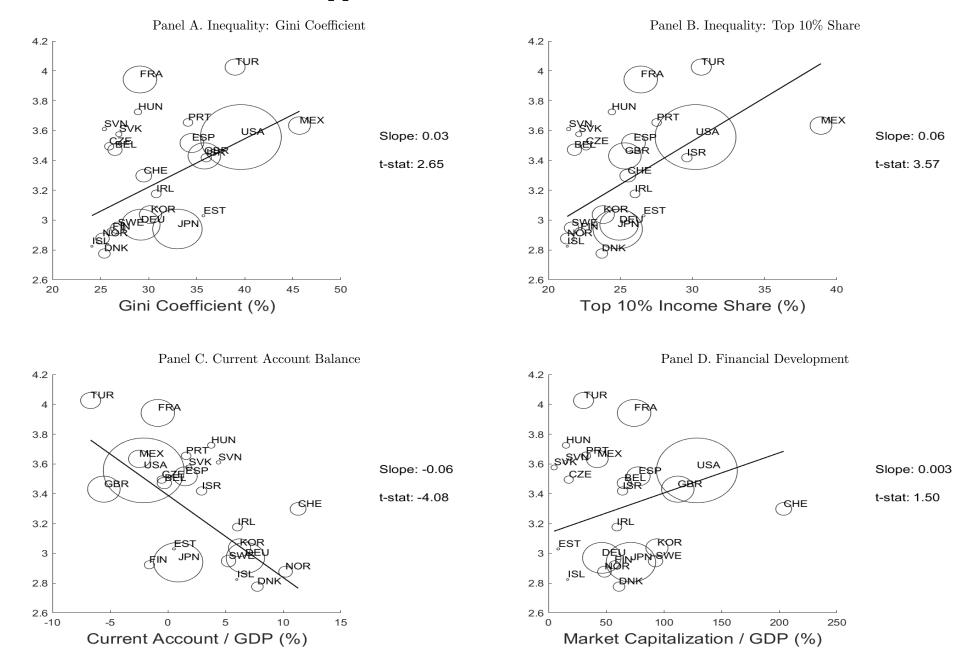
### Evidence: Which Countries Are Populist?


### • **Predictions:** Populism is stronger in countries with

- Higher inequality
- $-\operatorname{Lower}$  current account balance
- Higher financial development
- Examine a recent cross-section of rich countries
- Measure populism in four ways
  - -Vote share of populist parties in recent elections
    - $\ast$  Populist = 1. Nationalist, 2. Anti-immigrant, 3. Anti-elite
    - $\ast$  Data from ParlGov and 2014 Chapel Hill Survey of Experts
  - $-\operatorname{\mathbf{Survey-based}}$  support for protectionism; 2013 ISSP data

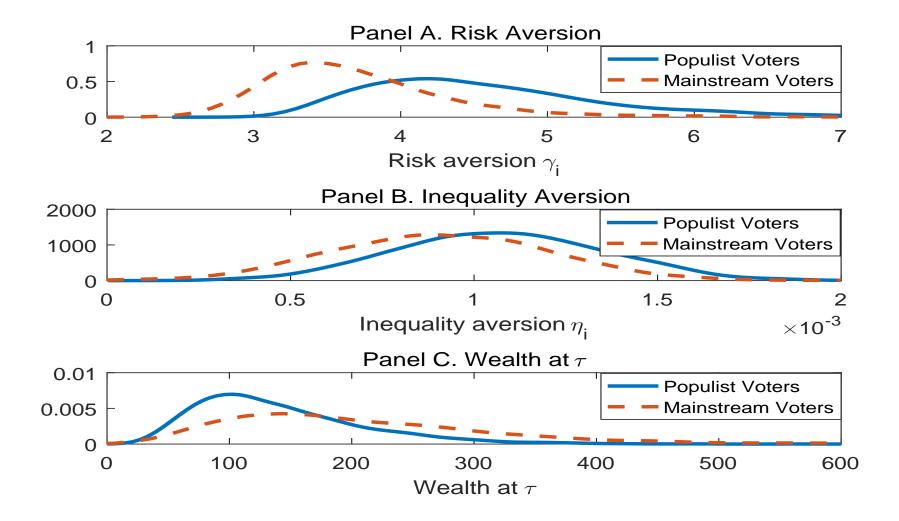

#### **Vote Share of Nationalist Parties**




#### **Vote Share of Anti-Immigrant Parties**



#### **Vote Share of Anti-Elite Parties**




#### Support for Protectionism



Who Are the Populist Voters?

• **Result:** Agents with higher  $\gamma_i$  and  $\eta_i$  tend to vote populist



Evidence: Who Are the Populist Voters?

- Use survey data on Brexit and Trump voters
  - -Brexit: 2014-2018 British Election Study, panel data
  - $-\,{\bf Trump:}\ 2016$  Cooperative Congressional Election Survey
- Empirical proxies:

### -Risk aversion

\* Brexit: Income, Education, WillingToTakeRisk, Religious \* Trump: Income, Education

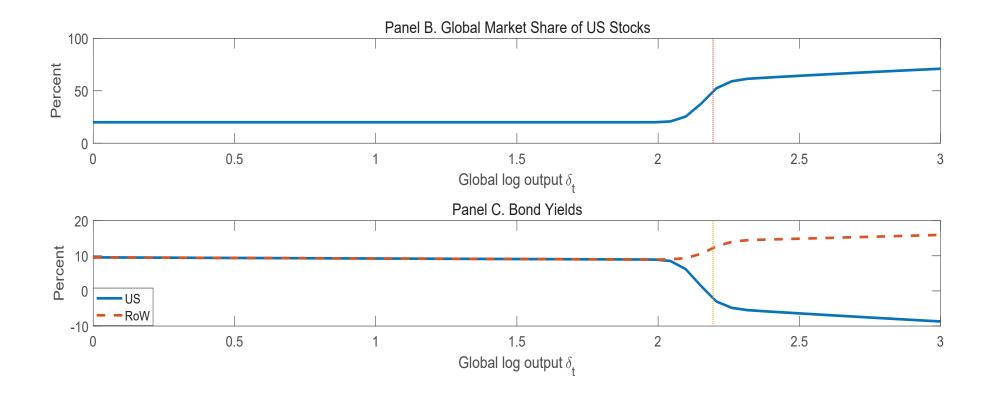
## – Inequality aversion

- \* Brexit: Income, Religious, LeftRight, InequalityBad, PoliticiansFavorTheRich, LawFavorsTheRich, DoNotTrustExperts
- $* {\rm Trump:} \ In come, \ Religious, \ Republican$

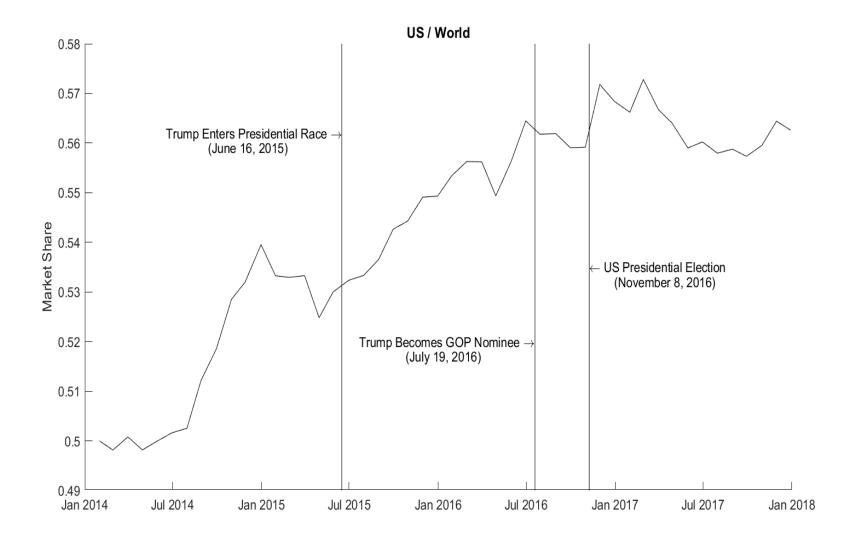
|                                                           | (1)                                          | (2)               | (3)            | (4)               | (5)             | (6)              | (7)                                        | (8)                                         |
|-----------------------------------------------------------|----------------------------------------------|-------------------|----------------|-------------------|-----------------|------------------|--------------------------------------------|---------------------------------------------|
| Income                                                    | -0.09<br>(-27.04)                            |                   |                | -0.06<br>(-15.04) |                 |                  | -0.06 $(-7.86)$                            | -0.06 $(-7.28)$                             |
| Education                                                 | · · · ·                                      | -1.27<br>(-60.29) |                | -1.22<br>(-44.27) |                 |                  | -0.65<br>(-12.57)                          | -0.55<br>(-9.83)                            |
| $Willingness {\it To TakeRisk}$                           |                                              | . ,               | 0.11<br>(7.86) | 0.21<br>(10.97)   |                 |                  | 0.17<br>(4.98)                             | 0.20<br>(5.54)                              |
| LeftRight                                                 |                                              |                   |                |                   | 0.44<br>(47.88) | 0.47<br>(41.71)  | 0.45<br>(35.20)                            | 0.42<br>(31.07)                             |
| Religious                                                 |                                              |                   |                |                   | 0.31<br>(8.52)  | 0.15<br>(3.43)   | 0.16<br>(3.16)                             | 0.11<br>(2.07)                              |
| In equality Bad                                           |                                              |                   |                |                   | 0.12<br>(3.40)  | -0.04<br>(-0.89) | -0.03<br>(-0.62)                           | -0.02<br>(-0.37)                            |
| Politicians Favor The Rich                                |                                              |                   |                |                   |                 | 0.29<br>(10.82)  | 0.27<br>(8.73)                             | 0.30<br>(9.34)                              |
| Law Favors The Rich                                       |                                              |                   |                |                   |                 | 0.11<br>(3.71)   | 0.07<br>(1.92)                             | 0.08<br>(2.17)                              |
| DoNotTrustExperts                                         |                                              |                   |                |                   |                 | 0.78<br>(36.94)  | 0.68<br>(27.76)                            | 0.66<br>(25.90)                             |
| Minority                                                  |                                              |                   |                |                   |                 | ( )              | ( )                                        | -0.54<br>(-5.53)                            |
| Age                                                       |                                              |                   |                |                   |                 |                  |                                            | 0.01<br>(4.23)                              |
| Gender (Male)                                             |                                              |                   |                |                   |                 |                  |                                            | -0.14 (-2.55)                               |
| Feminist                                                  |                                              |                   |                |                   |                 |                  |                                            | -0.36<br>(-11.47)                           |
| $\begin{array}{c} \text{Observations} \\ R^2 \end{array}$ | $\begin{array}{c} 31095 \\ 0.02 \end{array}$ | $40783 \\ 0.09$   | 40890<br>0.002 | $25328 \\ 0.11$   | $15631 \\ 0.21$ | $13953 \\ 0.35$  | $\begin{array}{c} 10838\\ 0.36\end{array}$ | $\begin{array}{c} 10370\\ 0.38 \end{array}$ |

### Determinants of the Support for Brexit

|                                                           | (1)                                         | (2)                                         | (3)                                        | (4)                                        | (5)                                         | (6)                                         | (7)                                        |  |
|-----------------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|--|
|                                                           | Panel A. Controlling for Republican Dummy   |                                             |                                            |                                            |                                             |                                             |                                            |  |
| Republican                                                | 3.06<br>(95.92)                             | 3.06<br>(95.93)                             | 3.06<br>(95.83)                            | $3.05 \\ (94.51)$                          | 2.92<br>(94.66)                             | 2.92<br>(89.32)                             | 2.86<br>(84.45)                            |  |
| Income                                                    | -0.02<br>(-4.64)                            |                                             | $0.06 \\ (3.86)$                           | 0.10<br>(6.41)                             |                                             | 0.11<br>(6.70)                              | $0.08 \\ (4.82)$                           |  |
| $Income^2$                                                |                                             | -0.002<br>(-5.72)                           | -0.01<br>(-5.11)                           | -0.01 $(-4.85)$                            |                                             | -0.005 $(-4.43)$                            | -0.004<br>(-3.80)                          |  |
| Education                                                 |                                             |                                             |                                            | -0.27<br>(-28.72)                          |                                             | -0.26<br>(-27.31)                           | -0.24<br>(-23.82)                          |  |
| Religious                                                 |                                             |                                             |                                            |                                            | $0.40 \\ (37.84)$                           | $0.37 \\ (32.59)$                           | 0.46<br>(37.82)                            |  |
| Minority                                                  |                                             |                                             |                                            |                                            |                                             |                                             | -1.28<br>(-34.04)                          |  |
| Age                                                       |                                             |                                             |                                            |                                            |                                             |                                             | $0.01 \\ (14.76)$                          |  |
| Gender (Male)                                             |                                             |                                             |                                            |                                            |                                             |                                             | 0.57<br>(21.14)                            |  |
| $\begin{array}{c} \text{Observations} \\ R^2 \end{array}$ | $\begin{array}{c} 40445\\ 0.32 \end{array}$ | $\begin{array}{c} 40445\\ 0.32 \end{array}$ | $\begin{array}{c} 40445\\ 0.32\end{array}$ | $\begin{array}{c} 40445\\ 0.33\end{array}$ | $\begin{array}{c} 45209\\ 0.34 \end{array}$ | $\begin{array}{c} 40426\\ 0.35 \end{array}$ | $\begin{array}{c} 40426\\ 0.40\end{array}$ |  |


### Determinants of the Support for Trump

|                                   | (1)                                        | (2)                | (3)              | (4)                                        | (5)               | (6)               | (7)               |  |  |  |
|-----------------------------------|--------------------------------------------|--------------------|------------------|--------------------------------------------|-------------------|-------------------|-------------------|--|--|--|
|                                   | Panel B. No Control for Republican Dummy   |                    |                  |                                            |                   |                   |                   |  |  |  |
| Income                            | -0.001<br>(-0.27)                          |                    | 0.10<br>(7.30)   | 0.14<br>(10.42)                            |                   | 0.15<br>(10.52)   | $0.12 \\ (8.15)$  |  |  |  |
| $Income^2$                        |                                            | -0.0004<br>(-2.10) | -0.01 $(-7.58)$  | -0.01<br>(-7.22)                           |                   | -0.01<br>(-6.36)  | -0.01 $(-5.43)$   |  |  |  |
| Education                         |                                            |                    |                  | -0.28<br>(-35.71)                          |                   | -0.27<br>(-33.09) | -0.25 $(-28.58)$  |  |  |  |
| Religious                         |                                            |                    |                  |                                            | $0.53 \\ (58.25)$ | 0.51<br>(52.02)   | $0.61 \\ (57.66)$ |  |  |  |
| Minority                          |                                            |                    |                  |                                            |                   |                   | -1.59<br>(-47.71) |  |  |  |
| Age                               |                                            |                    |                  |                                            |                   |                   | $0.01 \\ (14.54)$ |  |  |  |
| Gender (Male)                     |                                            |                    |                  |                                            |                   |                   | 0.47<br>(20.32)   |  |  |  |
| $\frac{\text{Observations}}{R^2}$ | $\begin{array}{c} 40456\\ 0.00\end{array}$ | $40456 \\ 0.0001$  | $40456 \\ 0.001$ | $\begin{array}{c} 40456\\ 0.03\end{array}$ | $45222 \\ 0.08$   | $40437 \\ 0.10$   | $40437 \\ 0.19$   |  |  |  |


### Determinants of the Support for Trump

### Asset Prices

- **Result:** Global market share of U.S. **stocks** increases before the populist victory.
- **Result:** U.S. **bond** yields fall before the populist victory.



### Global Share of U.S. Stock Market



Extensions  $\implies$  Same Conclusions

- Time-varying U.S. output share  $F_t$ 
  - Populist elected if  $\delta_{\tau} > \overline{\delta}(F_{\tau})$ , where  $\overline{\delta}'(F_{\tau}) > 0$
  - U.S. output share  $\downarrow \Longrightarrow$  Populism  $\uparrow$
- Time-varying population shares

-Immigration from RoW to U.S.  $\Longrightarrow$  Populism  $\uparrow$ 

- Higher costs of autarky
  - Lower output growth,  $\mu_\delta$
  - Higher output volatility,  $\sigma_\delta$

# Conclusions

- Backlash against globalization arises endogenously in our model
   Rational voters' optimal response to rising inequality
- Key modeling ingredients:
  - Inequality aversion
  - Heterogeneous risk aversion (within & across countries)
  - -Risk sharing (global vs. local)
- Evidence across countries and voters largely supports the model
  - Countries are more populist if they have more inequality, more financial development, and current account deficits
  - Voters are more populist if more risk- and inequality-averse